Isothermal vapour-liquid equilibrium for two quaternary systems including two alcohols, acetonitrile and benzene

Isamu Nagata

Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kodatsuno 2-40-20, Kanazawa 920 (Japan)

(Received 24 April 1992)

Abstract

Vapour-liquid equilibrium data have been reported for the quaternary systems methanol + isobutanol + acetonitrile + benzene, and methanol + *tert*-butanol + acetonitrile + benzene at 60°C using a modified Boublik vapour-recirculating still. The experimental results agree well with those calculated by the UNIQUAC associated-solution model with binary parameters alone.

LIST OF SYMBOLS

a _{IJ}	binary interaction energy parameter for the I-J pair
A, B, C, D	methanol, isobutanol or tert-butanol, acetonitrile and
	benzene
$A_i B_j C, A_i B_j D$	complexes containing <i>i</i> molecules of alcohol A, <i>j</i> mol-
	ecules of alcohol B and one molecule of component
	C or D
A_iC, A_iD	complexes containing i molecules of alcohol A and one
	molecule of component C or D
B _{IJ}	second virial coefficient for the the I-J pair
B_iC, B_iD	complexes containing i molecules of alcohol B and one
	molecule of component C and D
F	objective function as defined by eqn. (24)
$h_{\rm AB}, h_{\rm AC}, h_{\rm AD},$	enthalpies of complex formation between unlike mole-
$h_{\scriptscriptstyle m BC}, h_{\scriptscriptstyle m BD}$	cules
K _I	association constant of pure alcohol I
$K_{AB}, K_{AC}, K_{AD},$	equilibrium constants of complex formation between
$K_{\rm BC}, K_{\rm BD}$	unlike molecules
Р	total pressure

Correspondence to: I. Nagata, Department of Chemistry and Chemical Engineering, Division of Physical Sciences, Kanazawa University, Kodatsuno 2-40-20, Kanazawa 920, Japan.

$P_{\rm I}^{\rm s}$	saturated vapour pressure of pure component I
q_1	molecular geometric-area parameter, pure component I
Λ	
$r_{\rm I}$	molecular geometric-size parameter, pure component l
\bar{S}_{A}, \bar{S}_{B}	sums as defined by eqns. (19) and (20)
$S_{\rm A}, S_{\rm B}$	sums as defined by eqns. (21) and (22)
T	absolute temperature
v_1^L	molar liquid volume of pure component I
V	true molar volume of alcohol mixture
V_{1}^{0}	true molar volume of pure alcohol I
XI	liquid-phase mole fraction of component I
y _I	vapour-phase mole fraction of component I
Ζ	lattice coordination number equal to 10

I. Nagata/Thermochim. Acta 214 (1993) 349-359

Greek letters

γ_{I} θ_{I} $\sigma_{P}, \sigma_{T}, \sigma_{Y}, \sigma_{y}$	activity coefficient of component I area fraction of component I standard deviations in pressure, temperature, liquid-
., ., ., ,	phase mole fraction and vapour-phase mole fraction
$ au_{IJ}$	$\exp(-a_{\rm IJ}/T)$
ϕ_{I}	fugacity coefficient of component I at P and T
ϕ_1^{s}	fugacity coefficient of pure component I at P_{I}^{s} and T
$\Phi_{\rm I}$	segment fraction of component I
Φ_{I1}	monomer segment fraction of component I
Φ^0_{I1}	monomer segment fractions of pure alcohol I

Subscripts

ats

Superscript

*

reference state of 50°C or calculated value

INTRODUCTION

In continuing studies on quaternary vapour-liquid equilibrium (VLE) measurements [1-5], this paper reports experimental data for the

methanol + isobutanol or *tert*-butanol + acetonitrile + benzene systems at 60°C and the experimental results are compared with those predicted from the UNIQUAC associated-solution model with only binary parameters [1, 6, 7]. The following binary VLE data were used to obtain the binary energy parameters of the model: methanol + isobutanol or *tert*-butanol at 25°C [8]; methanol + acetonitrile at 55°C [9]; methanol + benzene at 55°C [10]; isobutanol + acetonitrile at 60°C [11]; isobutanol + benzene at 45°C [12]; *tert*-butanol + acetonitrile at 60°C [13]; *tert*-butanol + benzene at 45°C [12]; acetonitrile + benzene at 45°C [14].

EXPERIMENTAL

Isobutanol (2-methyl-1-propanol), *tert*-butanol (2-methyl-2-propanol) and acetonitrile (Wako Pure Chemical Industries Ltd., guaranteed reagent grade) were used without further purification. Methanol (first grade) was shaken with calcium oxide and distilled fractionally in 1 m glass columns with McMahon packing. Benzene (first grade) was subjected to repeated recrystallization. Densities of the compounds used for experimental work were measured with an Anton Paar densimeter DMA 40 at 25 or 30°C and agreed well with literature values [15]. A modified Boublik vapour-recirculating still was used to obtain VLE data as described previously [16]. Compositions of equilibrated liquid- and vapour-phase samples were analysed using a Shimadzu gas chromatograph GC-7A and a Shimadzu Chromatopac E-1B. The errors of the measured variables are: 0.16 Torr for pressure; 0.05°C for temperature; 0.002 for liquid- and vapour-phase mole fractions.

The experimental VLE data are given in Table 1, together with the activity coefficients γ_{I} and the fugacity coefficients ϕ_{I} derived from eqns. (1) and (2) below

$$\gamma_{\rm I} = P \phi_{\rm I} y_{\rm I} / \{ x_{\rm I} P_{\rm I}^{\rm s} \phi_{\rm I}^{\rm s} \exp[v_{\rm I}^{\rm L} (P - P_{\rm I}^{\rm s}) / RT] \}$$
(1)

$$\ln \phi_{\rm I} = \left(2\sum_{\rm J} y_{\rm J}B_{\rm IJ} - \sum_{\rm I} \sum_{\rm J} y_{\rm I} y_{\rm J}B_{\rm IJ}\right) P/RT$$
⁽²⁾

where P is the total pressure, P^s the pure-component vapour pressure, x the liquid-phase mole fraction, y the vapour-phase mole fraction, and T the absolute temperature; v^{L} the pure-liquid molar volume was estimated from a modified Rackett equation [17] and the second virial coefficients B were estimated using the correlation of Hayden and O'Connell [18].

TABLE 1

Quaternary experimental vapour-liquid equilibrium data for two systems at 60°C

$x_1 x_2 x_3 x_4 $	$\begin{array}{cccc} x_2 & x_3 & x_4 \\ \hline \end{array}$	x ₃ x ₄]	x4)		1	y2	y ₃	y4	P (Torr	۲1	Y2	γ ₃	Y4	φ1	ϕ_2	φ3	φ,
Methanol (1) + isobutanol (2) + acetonitrile (3) + benzene (4) 0.497 0.113 0.056 0.334 0.563 0.021 0.049	tol (1) + isobutanol (2) + acctonitrile (3) + benzene (4) 0.113 0.056 0.334 0.563 0.021 0.040	isobutanol (2) + acetonitrile (3) + benzene (4) 0.056 0.334 0.563 0.021 0.049	1 (2) + acetonitrile (3) + benzene (4) 0.334 0.563 0.021 0.049	tonitrile (3) + benzene (4) 0.563 0.021 0.049	(3) + benzene (4) 0.021 0.049	ene (4) 0 049		295.0	723.1	1 303	1 374	1 604	2 034	0 063	0 044	0 07	0 038
0.155 0.176 0.173 0.496 0.302 0.049 0.172	0.176 0.173 0.496 0.302 0.049 0.172	0.173 0.496 0.302 0.049 0.172	0.496 0.302 0.049 0.172	0.302 0.049 0.172	0.049 0.172	0.172		0.477	574.8	1.808	1.660	1.547	1.413	0.977	0.957	0.937	0.981
0.082 0.156 0.162 0.600 0.205 0.058 0.179	0.156 0.162 0.600 0.205 0.058 0.179	0.162 0.600 0.205 0.058 0.179	0.600 0.205 0.058 0.179	0.205 0.058 0.179	0.058 0.179	0.179		0.558	532.6	2.161	2.066	1.604	1.265	0.982	0.962	0.944	0.980
0.067 0.301 0.510 0.122 0.145 0.108 0.540	0.301 0.510 0.122 0.145 0.108 0.540	0.510 0.122 0.145 0.108 0.540	0.122 0.145 0.108 0.540	0.145 0.108 0.540	0.108 0.540	0.540		0.207	423.8	1.493	1.600	1.216	1.877	0.985	0.969	0.938	1.001
0.055 0.140 0.626 0.179 0.128 0.059 0.54	0.140 0.626 0.179 0.128 0.059 0.54	0.626 0.179 0.128 0.059 0.54	0.179 0.128 0.059 0.54	0.128 0.059 0.547	0.059 0.547	0.54	~	0.266	473.3	1.792	2.095	1.113	1.831	0.985	0.968	0.931	0.999
0.313 0.267 0.054 0.366 0.448 0.051 0.06	0.267 0.054 0.366 0.448 0.051 0.06	0.054 0.366 0.448 0.051 0.06	0.366 0.448 0.051 0.06	0.448 0.051 0.06	0.051 0.06	0.06	4	0.437	598.4	1.376	1.182	1.925	1.828	0.973	0.953	0.940	0.982
0.200 0.321 0.262 0.217 0.327 0.077 0.28	0.321 0.262 0.217 0.327 0.077 0.28	0.262 0.217 0.327 0.077 0.28	0.217 0.327 0.077 0.28	0.327 0.077 0.26	0.077 0.28	0.2	¥	0.312	512.8	1.353	1.280	1.502	1.905	0.976	0.959	0.935	0.991
0.055 0.140 0.626 0.179 0.128 0.059 0.54	0.140 0.626 0.179 0.128 0.059 0.54	0.626 0.179 0.128 0.059 0.54	0.179 0.128 0.059 0.5	0.128 0.059 0.54	0.059 0.54	0.5	5	0.266	473.3	1.792	2.095	1.113	1.831	0.985	0.968	0.931	0.999
0.395 0.137 0.133 0.335 0.488 0.027 0.12	0.137 0.133 0.335 0.488 0.027 0.12	0.133 0.335 0.488 0.027 0.12	0.335 0.488 0.027 0.12	0.488 0.027 0.12	0.027 0.13	0.1	ដ	0.364	689.7	1.360	1.394	1.676	1.920	0.966	0.946	0.925	0.984
0.272 0.128 0.352 0.248 0.393 0.032 0.25	0.128 0.352 0.248 0.393 0.032 0.26	0.352 0.248 0.393 0.032 0.26	0.248 0.393 0.032 0.25	0.393 0.032 0.26	0.032 0.28	0.25	Ω	0.292	632.0	1.463	1.629	1.351	1.920	0.970	0.951	0.920	066.0
0.619 0.161 0.061 0.159 0.634 0.027 0.07	0.161 0.061 0.159 0.634 0.027 0.07	0.061 0.159 0.634 0.027 0.07	0.159 0.634 0.027 0.07	0.634 0.027 0.07	0.027 0.07	0.0	4	0.265	670.8	1.093	1.154	2.182	2.885	0.963	0.946	0.929	0.991
0.138 0.130 0.365 0.367 0.270 0.040 0.30	0.130 0.365 0.367 0.270 0.040 0.30	0.365 0.367 0.270 0.040 0.30	0.367 0.270 0.040 0.30	0.270 0.040 0.30	0.040 0.30	0.30	Ø	0.381	577.4	1.822	1.843	1.310	1.542	0.976	0.957	0.928	0.987
0.127 0.133 0.195 0.545 0.289 0.041 0.18	0.133 0.195 0.545 0.289 0.041 0.18	0.195 0.545 0.289 0.041 0.18	0.545 0.289 0.041 0.18	0.289 0.041 0.18	0.041 0.18	0.18	œ	0.482	581.8	2.137	1.861	1.516	1.315	0.977	0.957	0.936	0.981
Methanol $(1) + tert-butanol (2) + acetonitrile (3) + benzene$	ol (1) + <i>tert</i> -butanol (2) + acetonitrile (3) + benzene	tert-butanol (2) + acctonitrile (3) + benzene	ol (2) + acetonitrile (3) + benzene	etonitrile (3) + benzene	(3) + benzene	zene	(4)										
0.591 0.168 0.073 0.168 0.591 0.061 0.07	0.168 0.073 0.168 0.591 0.061 0.07	0.073 0.168 0.591 0.061 0.07	0.168 0.591 0.061 0.07	0.591 0.061 0.07	0.061 0.07	0.07	S	0.273	691.0	1.098	0.834	1.899	2.894	0.962	0.947	0.926	0.989
0.063 0.131 0.628 0.178 0.134 0.126 0.49	0.131 0.628 0.178 0.134 0.126 0.49	0.628 0.178 0.134 0.126 0.49	0.178 0.134 0.126 0.49	0.134 0.126 0.49	0.126 0.49	0.4	8	0.241	522.7	1.802	1.708	1.110	1.841	0.981	0.967	0.925	0.998
0.067 0.252 0.499 0.182 0.118 0.207 0.4	0.252 0.499 0.182 0.118 0.207 0.4	0.499 0.182 0.118 0.207 0.4	0.182 0.118 0.207 0.4	0.118 0.207 0.4	0.207 0.4	0.4	131	0.244	515.8	1.470	1.440	1.194	1.794	0.979	0.967	0.928	0.995
0.110 0.370 0.355 0.165 0.156 0.261 0.3	0.370 0.355 0.165 0.156 0.261 0.3	0.355 0.165 0.156 0.261 0.3	0.165 0.156 0.261 0.3	0.156 0.261 0.3	0.261 0.3	0.3	52	0.231	515.9	1.181	1.235	1.375	1.871	0.977	0.966	0.930	0.994
0.067 0.269 0.537 0.127 0.114 0.229 0.47	0.269 0.537 0.127 0.114 0.229 0.47	0.537 0.127 0.114 0.229 0.47	0.127 0.114 0.229 0.47	0.114 0.229 0.47	0.229 0.47	0.4	1	0.186	505.3	1.392	1.464	1.187	1.927	0.980	0.968	0.927	0.999
0.065 0.404 0.131 0.400 0.105 0.282 0.1	0.404 0.131 0.400 0.105 0.282 0.1	0.131 0.400 0.105 0.282 0.1	0.400 0.105 0.282 0.1	0.105 0.282 0.1	0.282 0.13	0.1:	65	0.454	519.0	1.357	1.231	1.715	1.507	0.980	0.967	0.943	0.982
0.111 0.399 0.119 0.371 0.164 0.260 0.1	0.399 0.119 0.371 0.164 0.260 0.1	0.119 0.371 0.164 0.260 0.1	0.371 0.164 0.260 0.1	0.164 0.260 0.1	0.260 0.1	0.1	5	0.431	527.1	1.258	1.165	1.747	1.568	0.978	0.965	0.942	0.982
0.123 0.650 0.064 0.163 0.161 0.433 0.1	0.650 0.064 0.163 0.161 0.433 0.1	0.064 0.163 0.161 0.433 0.1	0.163 0.161 0.433 0.11	0.161 0.433 0.11	0.433 0.11	0.1	4	0.292	452.3	0.956	1.027	2.206	2.087	0.977	0.969	0.948	0.988
0.119 0.358 0.359 0.164 0.171 0.247 0.34	0.358 0.359 0.164 0.171 0.247 0.34	0.359 0.164 0.171 0.247 0.34	0.164 0.171 0.247 0.34	0.171 0.247 0.34	0.247 0.34	0.34	6	0.233	521.7	1.209	1.221	1.362	1.920	0.976	0.965	0.930	0.994
0.064 0.114 0.644 0.178 0.142 0.111 0.50	0.114 0.644 0.178 0.142 0.111 0.50	0.644 0.178 0.142 0.111 0.50	0.178 0.142 0.111 0.50	0.142 0.111 0.50	0.111 0.50	0.50	4	0.243	522.6	i.880	1.729	1.093	1.856	0.981	0.967	0.925	0.998
0.050 0.254 0.529 0.167 0.089 0.221 0.46	0.254 0.529 0.167 0.089 0.221 0.46	0.529 0.167 0.089 0.221 0.46	0.167 0.089 0.221 0.46	0.089 0.221 0.46	0.221 0.46	0.46	Q	0.230	503.2	1.451	1.490	1.171	1.801	0.980	0.968	0.928	0.997
0.269 0.095 0.180 0.456 0.416 0.048 0.1	0.095 0.180 0.456 0.416 0.048 0.1	0.180 0.456 0.416 0.048 0.1	0.456 0.416 0.048 0.1	0.416 0.048 0.1	0.048 0.1	0.1	45	0.391	695.7	1.719	1.171	1.494	1.525	0.967	0.948	0.923	0.982
0.113 0.500 0.232 0.155 0.149 0.333 0.2	0.500 0.232 0.155 0.149 0.333 0.2	0.232 0.155 0.149 0.333 0.2	0.155 0.149 0.333 0.2	0.149 0.333 0.2	0.333 0.2	0.2	78	0.240	496.3	1.055	1.123	1.607	1.987	0.976	0.967	0.935	0.992
0.380 0.127 0.126 0.367 0.467 0.058 0.11	0.127 0.126 0.367 0.467 0.058 0.11	0.126 0.367 0.467 0.058 0.11	0.367 0.467 0.058 0.11	0.467 0.058 0.11	0.058 0.11	0.1]	[]	0.363	708.9	1.389	1.077	1.680	1.795	0.965	0.947	0.924	0.983

DATA ANALYSIS

The experimental results were analysed using the UNIQUAC associatedsolution model. We assume that in a quaternary mixture including two alcohols (A and B), acetonitrile (C) and benzene (D), many chemical complexes are formed according to the association and multi-solvation of alcohol molecules and the solvation between the terminal hydroxy groups of alcohol polymers and copolymers and acetonitrile or benzene. Their general formulae are A_i , B_i , $(A_iB_j)_k$, $(B_iA_j)_k$, $A_i(B_jA_k)_l$, $B_i(A_jB_k)_l$, A_iC , A_iD , B_iC , B_iD , $(A_iB_j)_kC$, $(A_iB_j)_kD$, $(B_iA_j)_kC$, $(B_iA_j)_kD$, $A_i(B_jA_k)_lC$, $A_i(B_jA_k)_lD$, $B_i(A_jB_k)_lC$ and $B_i(A_jB_k)_lD$. The equilibrium constants for chemical-complex-forming reactions are assumed to be independent of the degrees of homo-association and hetero-association and are defined as

$$K_{A} = \frac{\Phi_{A_{i+1}}}{\Phi_{A_{i}}\Phi_{A_{1}}} \frac{i}{i+1} \qquad \text{for} \quad A_{i} + A_{1} = A_{i+1}$$
$$= K_{A}^{*} \exp\left[-\frac{h_{A}}{R}\left(\frac{1}{T} - \frac{1}{T^{*}}\right)\right] \qquad (3)$$

$$K_{\rm B} = \frac{\Phi_{\rm B_{i+1}}}{\Phi_{\rm B_i}\Phi_{\rm B_1}} \frac{i}{i+1} \qquad \text{for} \quad B_i + B_1 = B_{i+1}$$
$$= K_{\rm B}^* \exp\left[-\frac{h_{\rm B}}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (4)$$

$$K_{AB} = \frac{\Phi_{A_i B_j A_k B_l}}{\Phi_{A_i B_j A_k} \Phi_{B_l}} \frac{r_{A_i B_j A_k} r_{B_l}}{r_{A_i B_j A_k B_l} r_A r_B} \qquad \text{for} \quad A_i B_j A_k + B_l = A_i B_j A_k B_l$$
$$= K_{AB}^* \exp\left[-\frac{h_{AB}}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (5)$$

$$K_{AC} = \frac{\Phi_{A,C}}{\Phi_{A,}\Phi_{C_1}} \frac{1}{ir_A + r_C} \qquad \text{for} \quad A_i + C_1 = A_iC$$
$$= K_{AC}^* \exp\left[-\frac{h_{AC}}{R}\left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (6)$$

$$K_{\rm BC} = \frac{\Phi_{\rm B,C}}{\Phi_{\rm B_i} \Phi_{\rm C_1}} \frac{1}{ir_{\rm B} + r_{\rm C}} \qquad \text{for} \quad B_i + C_1 = B_i C$$
$$= K_{\rm BC}^* \exp\left[-\frac{h_{\rm BC}}{R} \left(\frac{1}{T} - \frac{1}{T^*}\right)\right] \qquad (7)$$

 K_{AD} and K_{BD} are defined similarly as in eqns. (6) and (7), respectively.

The activity coefficients of methanol (A) and acetonitrile (C) are expressed by

$$\ln \gamma_{A} = \ln\left(\frac{\Phi_{A_{1}}}{\Phi_{A_{1}}^{0}X_{A}}\right) + \frac{r_{A}}{V_{A}^{0}} - \frac{r_{A}}{V} - \left(\frac{Z}{2}\right)q_{A}\left(\ln\frac{\Phi_{A}}{\theta_{A}} + 1 - \frac{\Phi_{A}}{\theta_{A}}\right) + q_{A}\left[1 - \ln\left(\sum_{J}\theta_{A}\tau_{JA}\right) - \sum_{J}\frac{\theta_{J}\tau_{AJ}}{\sum_{K}\theta_{K}\tau_{KJ}}\right]$$
(8)

$$\ln \gamma_{\rm C} = \ln \frac{\Phi_{\rm C_{\rm I}}}{x_{\rm C}} + 1 - \frac{r_{\rm C}}{V} - \left(\frac{Z}{2}\right) q_{\rm C} \left(\ln \frac{\Phi_{\rm C}}{\theta_{\rm C}} + 1 - \frac{\Phi_{\rm C}}{\theta_{\rm C}}\right) + q_{\rm C} \left[1 - \ln \left(\sum_{\rm J} \theta_{\rm C} \tau_{\rm JC}\right) - \sum_{\rm J} \frac{\theta_{\rm J} \tau_{\rm CJ}}{\sum_{\rm K} \theta_{\rm K} \tau_{\rm KJ}}\right]$$
(9)

where Z is the coordination number set as 10, and the segment fraction Φ , the surface fraction θ , the binary adjustable parameter τ_{IJ} related to the energy parameter a_{IJ} , the pure-alcohol monomer segment fraction Φ_{II}^0 and the true molar volume V_I^0 for pure alcohol I are given by

$$\Phi_{\rm I} = x_{\rm I} r_{\rm I} \bigg/ \sum_{\rm J} x_{\rm J} r_{\rm J} \tag{10}$$

$$\theta_{\rm T} = x_{\rm T} q_{\rm T} \Big/ \sum_{\rm J} x_{\rm J} q_{\rm J} \tag{11}$$

$$\tau_{\rm IJ} = \exp(-a_{\rm IJ}/T) \tag{12}$$

$$\Phi_{\rm II}^{\rm 0} = [2K_{\rm I} + 1 - (1 + 4K_{\rm I})^{0.5}/2K_{\rm I}^2 \tag{13}$$

$$V_{\rm I}^0 = r_{\rm I} / (1 - K_{\rm I} \Phi_{\rm II}^0) \tag{14}$$

The activity coefficients of the butanols (B) and benzene (D) are easily derived by changing the subscript A to B in eqn. (3) and C to D in eqn. (4). The monomer segment fractions in the mixture, Φ_{A_1} , Φ_{B_1} , Φ_{C_1} , and Φ_{D_1} , are obtained from simultaneous solution of eqns. (15)-(18):

$$\Phi_{A} = (1 + r_{A}K_{AC}\Phi_{C_{1}} + r_{A}K_{AD}\Phi_{D_{1}})\bar{S}_{A} + \frac{r_{A}K_{AB}\bar{S}_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})^{2}} \times \{2 + r_{B}K_{AB}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}K_{AB}S_{B} + \Phi_{C_{1}}[(r_{A}K_{AC} + r_{B}K_{BC}) + r_{A}r_{B}K_{AB}K_{AC}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{BC}S_{B}] + \Phi_{D_{1}}[(r_{A}K_{AD} + r_{B}K_{BD}) + r_{A}r_{B}K_{AB}K_{AD}S_{A}(2 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}) + r_{A}r_{B}K_{AB}K_{BD}S_{B}]\}$$
(15)

$$\Phi_{\rm B} = (1 + r_{\rm B}K_{\rm BC}\Phi_{\rm C_{1}} + r_{\rm B}K_{\rm BD}\Phi_{\rm D_{1}})\bar{S}_{\rm B} + \frac{r_{\rm B}K_{\rm AB}S_{\rm A}S_{\rm B}}{(1 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B})^{2}} \times \{2 + r_{\rm A}K_{\rm AB}S_{\rm B}(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B}) + r_{\rm B}K_{\rm AB}S_{\rm A} + \Phi_{\rm C_{1}}[(r_{\rm A}K_{\rm AC} + r_{\rm B}K_{\rm BC}) + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm BC}S_{\rm B}(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B}) + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm AC}S_{\rm B}] + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm AC}S_{\rm B}(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B}) + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm BD}S_{\rm B}(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B}) + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm BD}S_{\rm B}(2 - r_{\rm A}r_{\rm B}K_{\rm AB}^{2}S_{\rm A}S_{\rm B}) + r_{\rm A}r_{\rm B}K_{\rm AB}K_{\rm AD}S_{\rm A}]\}$$

$$(16)$$

$$\Phi_{\rm C} = \Phi_{\rm C_l} \left\{ 1 + r_{\rm C} K_{\rm AC} S_{\rm A} + r_{\rm C} K_{\rm BC} S_{\rm B} + \frac{r_{\rm A} r_{\rm B} r_{\rm C} K_{\rm AB}^2 S_{\rm A} S_{\rm B}}{(1 - r_{\rm A} r_{\rm B} K_{\rm AB}^2 S_{\rm A} S_{\rm B})} \times \left[\frac{K_{\rm AC}}{r_{\rm B} K_{\rm AB}} + \frac{K_{\rm BC}}{r_{\rm A} K_{\rm AB}} + K_{\rm AC} S_{\rm A} + K_{\rm BC} S_{\rm B} \right] \right\}$$
(17)

$$\Phi_{\rm D} = \Phi_{\rm D_1} \left\{ 1 + r_{\rm D} K_{\rm AD} S_{\rm A} + r_{\rm D} K_{\rm BD} S_{\rm B} + \frac{r_{\rm A} r_{\rm B} r_{\rm D} K_{\rm AB}^2 S_{\rm A} S_{\rm B}}{(1 - r_{\rm A} r_{\rm B} K_{\rm AB}^2 S_{\rm A} S_{\rm B})} \times \left[\frac{K_{\rm AD}}{r_{\rm B} K_{\rm AB}} + \frac{K_{\rm BD}}{r_{\rm A} K_{\rm AB}} + K_{\rm AD} S_{\rm A} + K_{\rm BD} S_{\rm B} \right] \right\}$$
(18)

where the sums \bar{S}_A , \bar{S}_B , S_A and S_B , are written

$$\bar{S}_{A} = \Phi_{A_{1}} / (1 - K_{A} \Phi_{A_{1}})^{2}$$
⁽¹⁹⁾

$$\bar{S}_{\rm B} = \Phi_{\rm B_1} / (1 - K_{\rm B} \Phi_{\rm B_1})^2 \tag{20}$$

$$S_{\rm A} = \Phi_{\rm A_1} / (1 - K_{\rm A} \Phi_{\rm A_1}) \tag{21}$$

$$S_{\rm B} = \Phi_{\rm B_1} / (1 - K_{\rm B} \Phi_{\rm B_1}) \tag{22}$$

The true molar volume of the mixture V is described as

$$\frac{1}{V} = \frac{S_{A}}{r_{A}} + \frac{S_{B}}{r_{B}} + \left(\frac{2}{r_{A}r_{B}K_{AB}} + \frac{S_{A}}{r_{A}} + \frac{S_{B}}{r_{B}}\right) \frac{r_{A}r_{B}K_{AB}^{2}S_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})}
+ \frac{\Phi_{C_{1}}}{r_{C}} \left\{1 + r_{C}K_{AC}S_{A} + r_{C}K_{BC}S_{B}
+ \left[\left(\frac{1}{r_{B}K_{AB}} + S_{A}\right)K_{AC} + \left(\frac{1}{r_{A}K_{AB}} + S_{B}\right)K_{BC}\right]\frac{r_{A}r_{B}r_{C}K_{AB}^{2}S_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})}\right\}
+ \frac{\Phi_{D_{1}}}{r_{D}} \left\{1 + r_{D}K_{AD}S_{A} + r_{D}K_{BD}S_{B}
+ \left[\left(\frac{1}{r_{B}K_{AB}} + S_{A}\right)K_{AD} + \left(\frac{1}{r_{A}K_{AB}} + S_{B}\right)K_{BD}\right]\frac{r_{A}r_{B}r_{D}K_{AB}^{2}S_{A}S_{B}}{(1 - r_{A}r_{B}K_{AB}^{2}S_{A}S_{B})}\right\}$$
(23)

The molecular structural parametes of the pure components, r and q, were calculated using the method of Vera et al. [19]. The association constants for alcohols at 50°C are: 173.9 for methanol; 50.6 for isobutanol;

and 23.1 for tert-butanol [20]. The molar enthalpy of the hydrogen bond for alcohols was taken as $-23.2 \text{ kJ mol}^{-1}$ [21]. The solvation constants at 50°C and enthalpies of complex formation taken from previous papers [6, 22-24] are: $K_{AB} = 80$ and $h_{AB} = -23.2 \text{ kJ mol}^{-1}$ for methanol + isobutanol; $K_{AC} = 30$ and $h_{AC} = -17$ kJ mol⁻¹ for methanol + acetonitrile; $K_{AD} = 4$ and $h_{AD} = -8.3 \text{ kJ mol}^{-1}$ for methanol + benzene; $K_{BC} = 30$ and $h_{\rm BC} = -17 \, \text{kJ mol}^{-1}$ for isobutanol + acetonitrile; $K_{\rm BD} = 2$ and $h_{\rm BD} =$ -8.3 kJ mol^{-1} for isobutanol + benzene; $K_{AB} = 55$ and $h_{AB} = -23.2$ kJ mol⁻¹ for methanol + *tert*-butanol; $K_{BC} = 15$ and $h_{BC} = -17$ kJ mol⁻¹ for tert-butanol + acetonitrile; $K_{BD} = 2.5$ and $h_{BD} = -8.3$ kJ mol⁻¹ for tertbutanol + benzene. All the h values were assumed to be temperature independent and to fix the temperature dependence of the equilibrium constants through the van't Hoff relation. Table 2 gives the vapour pressures, liquid molar volumes, second virial coefficients and structural parameters for the pure components and the cross second virial coefficients used in data analysis.

The binary energy parameters of the model were determined as described by Prausnitz et al. [25] using a computer program which minimizes the objective function

$$F = \sum_{i=1}^{N} \left[\frac{(P_i - P_i^*)^2}{\sigma_P^2} + \frac{(T_i - T_i^*)^2}{\sigma_T^2} + \frac{(x_{1i} - x_{1i}^*)^2}{\sigma_x^2} + \frac{(y_{1i} - y_{1i}^*)^2}{\sigma_y^2} \right]$$
(24)

where an asterisk represents the most probable calculated value and the standard deviations of the measured variables were set as $\sigma_P = 1$ Torr, $\sigma_T = 0.05$ K, $\sigma_x = 0.001$ and $\sigma_y = 0.003$. Table 3 shows the binary

TABLE 2

Vapour pressures P_i^s , liquid molar volumes v_i^L , second virial coefficients B_u and molecular structural parameters r and q for the pure components and cross section virial coefficients B_u at 60°C

	Methanol	Isobutanol	tert-Butanol	Acetonitrile	Benzene
 <i>P</i> , (Тогг)	629.8	93.0	289.8	368.0	391.5
v_{L}^{L} (cm ³ mol ⁻¹)	41.3	97.7	100.2	55.6	93.3
B_{μ} (cm ³ mol ⁻¹)	-1305	-2455	-1397	-3475	-1110
r	1.15	2.77	2.77	1.50	2.56
q	1.12	2.42	2.42	1.40	2.05
Mixture	B	$(\mathrm{cm}^3 \mathrm{mol}^{-1})$	Mixture		B_{ij} (cm ³ mol ⁻¹)
Methanol + isobu	itanol –	1453	Acetonitrile	+ benzene	-1057
Methanol + aceto	onitrile —	1691	Methanol +	tert-butanol	-1463
Methanol + benz	ene –	-420	tert-Butanol	+ acetonitrile	-2017
Isobutanol + acet	onitrile –2	2007	tert-Butanol	+ benzene	-893
Isobutanol + ben	zene –	-907			

TABLE 3

Binary calculated results

System (A + B)	Temp.	Number of data	Root-mean-s	quare deviations			Parameter	8
	<u>)</u>	points	<i>δР</i> (Топ)	δ <i>T</i> (K)	δx (×10 ³)	δy (×10³)	^{a_{AB}} (K)	^{авд} (К)
Acetonitrile + benzene	45	12	0.78	0.02	0.5	3.6	-10.54	258.38
Isobutanol + acetonitrile	99	14	2.02	0.00	1.5	5.3	638.85	104.83
Isobutanol + benzene	45	10	0.08	0.00	0.3	2.4	-8.36	154.38
tert-Butanol + acetonitrile	3	11	2.06	0.00	0.9	5.9	523.91	82.74
tert-Butanol + benzene	45	11	1.17	0.00	0.7	4.7	133.89	31.33
Methanol + acetonitrile	55	13	1.59	0.00	1.2	5.3	480.17	-113.15
Methanol + benzene	55	6	0.94	0.06	1.4	4.7	-71.04	220.25
Methanol + isobutanol	25	14	2.02	0.02	0.3	6.2	-44.94	258.17
Methanol + tert-butanol	25	19	0.56	0.01	0.2	1.6	-75.96	182.54
	A DEC.							

System	Temp.	Number of data	Dev. ^ª	Vapour	mole frac	tions		Pressure		Ref.
		points		δy_1 (×10 ³)	δy ₂ (×10 ³)	δy ₃ (×10 ³)	δy ₄ (×10 ³)	δ <i>P</i> (Torr)	δ <i>P/P</i> (%)	
Methanol (1) + ethanol (2)			I	5.5	7.4	3.6	7.1	2.34	0.71	
+ acetonitrile (3) + benzene (4)	45	25	П	6.5	9.1	4.8	9.5	3.02	0.93	+1
Ethanol (1) + 1-propanol (2)			I	2.1	3.4	6.0	3.8	2.30	1.01	
+ acetonitrile (3) + benzene (4)	45	24	п	2.7	4.4	6.7	4.8	2.91	1.20	7
Methanol $(1) + 1$ -propanol (2)			I	5.0	3.3	7.5	6.0	3.22	0.72	
+ acetonitrile (3) + benzene (4)	55	24	II	6.6	4.1	8.9	7.3	3.86	0.86	3
Methanol $(1) + 1$ -butanol (2)			I	7.4	4.4	5.6	7.8	3.31	0.79	
+ acetonitrile (3) + benzene (4)	55	26	II	9.7	4.6	7.0	9.6	3.91	0.97	4
Methanol (1) + 2-propanol (2)			Ι	4.0	2.6	3.1	7.5	2.03	0.41	
+ acetonitrile (3) + benzene (4)	55	21	п	5.6	3.5	4.1	8.9	2.44	0.50	S
Methanol (1) + isobutanol (2)			-	7.2	6.6	4.2	5.9	3.97	0.71	
+ acetonitrile (3) + benzene (4)	09	13	II	9.1	6.6	5.1	7.9	4.52	0.82	This work
Methanol $(1) + tert-butanol (2)$			I	6.6	7.3	5.9	7.6	3.42	0.63	
+ acetonitrile (3) + benzene (4)	60	14	II	T.T	8.0	6.7	8.5	3.95	0.73	This work

^a I, absolute arithmetic mean; II, root-mean-square.

TABLE 4

Prediction of isothermal quaternary varpour-liquid equilibria

calculated results. Table 4 shows the deviations between the experimental and predicted values of quaternary VLE together with those for other systems [1-5], indicating that agreement is good.

REFERENCES

- 1 I. Nagata, Thermchim. Acta, 157 (1990) 95.
- 2 I. Nagata, Phys. Chem. Liq., 21 (1990) 137.
- 3 I. Nagata, J. Chem. Thermodyn., 22 (1990) 501.
- 4 I. Nagata, J. Chem. Thermodyn., 23 (1991) 293.
- 5 I. Nagata, Y. Fukushima and K. Miyazaki, Fluid Phase Equilibria, 71 (1992) 17.
- 6 I. Nagata, Fluid Phase Equilibria, 19 (1985) 153.
- 7 I. Nagata and K. Ohtsubo, Thermochim. Acta, 102 (1986) 185.
- 8 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Organic Hydroxy Compounds: Alcohols (Supplement 1), Vol. I, Part 2c, DECHEMA Chemistry Data Ser., DECHEMA, Frankfurt am Main, Germany 1982, p. 130, 134.
- 9 I. Nagata, K. Katch and J. Koyabu, Thermochim. Acta, 47 (1981) 225.
- 10 J. Gmehling and U. Onken, Vapor-Liquid Equilibrium Data Collection, Organic Hydroxy Compounds: Alcohols, Vol. I, Part 2a, DECHEMA Chemistry Data Ser, DECHEMA, Frankfurt am Main, Germany, 1977, p. 217.
- 11 I. Nagata, Thermochim. Acta, 126 (1988) 107.
- 12 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Organic Hydroxy Compounds: Alcohols and Phenols, Vol. I, Part 2b, DECHEMA Chemistry Data Ser., DECHEMA, Frankfurt am Main, Germany, 1978, p. 256, 283.
- 13 I. Nagata, J. Chem. Thermodyn., 21 (1989) 225.
- 14 J. Gmehling, U. Onken and W. Arlt, Vapor-Liquid Equilibrium Data Collection, Aromatic Hydrocarbons, Vol. I, Part 7, DECHEMA Chemistry Data Ser., Frankfurt am Main, Germany, 1980, p. 122.
- 15 J.A. Riddick, W.B. Bunger and T.K. Sakano, Organic Solvents, 4th edn., Wiley-Interscience, New York, 1986, p. 135, 190, 202, 204, 582.
- 16 I. Nagata, J. Chem. Eng. Data, 30 (1985) 201.
- 17 C.F. Spencer and R.P. Danner, J. Chem. Eng. Data, 17 (1972) 236.
- 18 J.G. Hayden and J.P. O'Connell, Ind. Eng. Chem. Proc. Des. Dev., 14 (1975) 209.
- 19 J.H. Vera, S.G. Sayegh and G.A. Ratcliff, Fluid Phase Equilibria, 1 (1977) 113.
- 20 V. Brandani, Fluid Phase Equilibria, 12 (1983) 87.
- 21 R.H. Stokes and C. Burfitt, J. Chem. Thermodyn., 5 (1973) 623.
- 22 I. Nagata, Thermochem. Acta, 126 (1988) 107.
- 23 I. Nagata, J. Chem. Thermodyn., 21 (1989) 225.
- 24 I. Nagata, Fluid Phase Equilibria, 65 (1991) 239.
- 25 J.M. Prausnitz, T.F. Anderson, E.A. Grens, C.A. Eckert, R. Hsieh, and J.P. O'Connell, Computer Calculations for Multicomponent Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, Englewood Cliffs, NJ, 1980, Chapters 3, 4, 6 and Appendices C and D.